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COMPRESSION SHOCKS IN TWO-DIMENSIONAL GAS FLOWS™

By A. Busemann

The following arguments on the compression shocks in gas flow start
with a simplified representation of the results of the study made by
Th. Meyer as published in the Forschungsheft 62 of the VDI, surplemented
by several amplifications for the appllcation.

In the treatment of compression shocks, the equation of ensrgy,
the equation of continuity, the momentum equation, the equation of state
of the particular gas, as well as the condition of the second law of
thermodynamics that no decrease of entropy 1s possible in an isolated
system, must be taken into consideration. The result 1s that, in those
cases where the sudden change of state according to the second law of
therncéynamics is possible, there always ogcurs & compression of the gas
which is uniquely determined by the other conditions.

First, 1t will be shown that the resulting relations can be easily
expressed 1f the thermodynamic and the pure dynamlic relations have been
previocusly transformed so that pure thermodynamics, as well as pure
dynemics, can be expressed simultaneously in one dlagram. Slnce the
gtatic pressure p 1tself represents a state quantity as well as a dynamic
quantity, one axis of the dlagram may represent a p—exls. From the equation
of energy for steady flow from & tank follows — the heat conduction being
disregarded — the conventional relation that the kinetic energy of the

unit mass %wg (w = velocity) 1is equal to the difference of the heat

content of the tank 1, and the momentary heat content 1. Hence, when

a w—exis 1s chosen as the other axis, the lines w = Constant correspond
to definite heat contents 1 and the dlagram can be used as a distorted
p,1 diagram exactly like any other state dlagram utilizing two state—
guantities as axes. The following general relations in thils diagram can
be easily proved for adiabatic flow (fig. 1). For constant entropy, the
negative differential quotient —dp/dw represents the rate of flow pw

2
(p = gas censity), as obtained from Bernoulli's equation: —e idw .
The slope of the line of constant entropy accordingly represents f‘or each
point the rate of flow, that is, the reclprocal value of the surface
necessary for the dlscharge of the unit mass. It immediately follows
that the tangent to the entropy line on the p~axls cuts the momentum p + gw—

“Vbrdichtungsstosse in ebenen Gasstrdmungen." Vortrége aus dem
Gebiete der Aerodynamik und verwendter Gebiete, Aachen 1929, pp. 162-169.



2 : NACA TM No. 1199

From these simple relations in the p,w dlagram, the statement is
readlly proved that normal compression shocks or compression shocks,in
one—-dimensional flow are possible only between those points which have a
common tangent on thelr entropy lines. Such states fulfill the equation
of state of the particular gas, because they are located on its p,1 dla—
gram; they comply with the eguation of energy, because the equation 1s
uged to identify the w—exis; they satisfy continuity, because thelr entropy
lines have the same direction; and they have identical momentum, because
the tangents have equal intercepts on the p-axis (fig. 2).

The gecond law of thermodynsmice contributes the fact that the later
one be the state of greater entropy. Since the cross section necessary
for the unit mass Increases with the speed at supersonlc velocity, and
hence the rate of flow decreases, the upward concave pert of the entropy
lines signifies supersonic veloclty, the upwardly ¢onvex pert subsonic
veloclty. Normal compression shocks have, therefore, supersonlc speed
as inltial state and subsonic speed as terminal state.

Extension of the arguments to include two—dimensitnsl flow simply
involves the substitution of the w—exis for a u,v or veloclty plane,
against which the pressures p are plotted, the surface of equal entropy
being obtained as surface of rotation of the entropy lines of the p,v dla—
gram (fig. 3). In isentropic flow, all states are situated on one single
surface of constant emtropy. As stated elsewhere (reference 1), the gas
flow is unusually sensitive in cross sections in which a relatively
maximum rate of flow exists. In one—dimensional flow, the absolute
maximum rate of flow 1ls through cross sectlions in which the flow velocity
equals the sonic velocity. In the p,w dlagrem, they are represented by
the point of inflexion of the entropy lines as the point of maximum slope

. of the entropy line. In two—dilmensional flow, all such cross sectlions are
normel to the dlrections of the curves of the main tangents on the saddle—
like curved reglon of the entropy surface. Then sensitlve cross sections
wlth the relatlvely maximum rate of flow appear ag steady sound waves in
two—dimensional supersonic flow, when minor disturbances (such as
€ough92§ng with a file) are applied at the boundary walls of the flow

fig.-4).

The curves of the main tangents projected on the plane of the velocity
then glve a network of lines by means of which the supersonic flow in the
prescribed channels can be pursued (fig. 5).

If the streamlines in a supersonic flow are deflected at a finilte
angle toward the flow, say, by the boundary wall, for example, no stagnation
polnt need occur at this polnt like in the subsonic flow. The supersonic
flow can rather achleve the deflection by an oblique compression shock
(fig. 6), 1if the angle of deflection does not exceed a certain amount.
But this is accompanied by an entropy rise without which momentum, energy,
and continuity theorem camnot be fulfilled. The terminal states after a

a
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compression shock are therefore no longer located on the surface of constant
entropy, but within the pressure dome of constant initial entropy by reason
of the entropy rise. On assuming the direction of the compresslon shock,

or normal to it, the direction of the velocity variation, as given, it
results in a p,v dlagram sbove the particular straight line, in which

the terminal state can be 1ldentified as the mormal compression shock
exactly like in figure 2 (fig. T).

For a given velocity w; all terminal states after compression shocks
lie on the tangential plane at the pressure dome In point p;, ¥y (fig. 8).

In the tangential plane, the terminal states appear agaln as polnts of
relatively maximum entropy on all rays through Pys M. In the proJjection

on the veloclty plane, the line commecting all terminal states Eé possible

from w3 1s termed shock polar. The shock polars give the possible

deflections as well as the position of the shock surface perpendicular to
the velocity difference w; — ¥p for each deflection. Figure 9 represents

a ghock polar dilagram for air with k = 1.405, showing the shock polars from
different starting points on the u—exis, along with the curves of constant
entropy of the terminal state and indicated by the pressure ratlo p'o/po.

By multiplication with p'o/p0 it affords, for perfect gases, the helght of

the other surfaces of constant entropy from the heights of the inlitial
adlabatic surface,

With these dlagrams, it is possible to follow two-dimensional flows
even in cases where compression shocks occur. For illustration, flgure 10
shows a flat plate with a given angle of attack and flgure 11 shows
a symmetricael flow past a biconvex airfoil, and in figure 12, a schlieren
record of real flow past such an airfoil. This example demonstrates that
supersonic flows in which shocks occur, cen also be treated graphically
in close agreement with reallty. Minor deflections may be treated by
the methods of adlabatic flow.

Strong compression shocks present a certain difficulty if nelghboring
stream filaments pass through compression shocks of dissimllar intensity. Such
flows are no longer irrotationsl and can then be treated approximately by
the methods of potential flow only if the vortex strength is concentrated
in certain stream lines. Each strip between two such stream lines can then
be treated separstely as potential flow and the bordering stream lines
plotted in such a way that equal pressure and equal veloclty direction
appear in both adjacent strips. In the examples (figs. 10 and 11), the
departure from potential flow was regarded as disappearingly small.
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Discussion

Mr. Burgders, Delft, asked whether it was possible to draw a con—
clusion from the compression shocks about the wave reslstance of bodies
at supersonlc apeeds. '

Bugemann: To compute the magnitude of wave resistance 1t is per—
missible for slender profiles to work with adlabatic compression shocks,
as glven by Riemann (reference 2). The result is then invariably a
positive pressure on the surfaces which push the flow aside, and negative
Pressure on the surfaces which contribute room to the flow. From this
the wave resistance (reference 3) follows immediately. The question of
where the work of resistance in the gas remains can be answered from the
compression shocks, even for slender profiles., As figure 11 indicates, com—
prossion shocks are obtained, the strength of which abates simultaneously
with the dlsappearance of the wave fleld with increasing distance from
the profile. By integration with respect to all stream filaments, it
can be proved that the heating of the gas on traversing the compression
shocks precisely represents the work of resistance., The resistance momentum
follows likewise as'momentum of the forward movemsnt in the wake produced by
the shocks.

Translated by J. Vanier
National Advisory Committee
for Aeronautlcs
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Figure 1,- Relations in the p,w diagram,
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Pigure 2.- Normal comp

ressl

on shock in the p,w diagramnl.
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Figure 3.~ p,u,v diagram for plane flow with constant entropy.
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Figure 4.- Schlieren photograph of steady sound waves.
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Figure 6,- Compression shock at deflection by a finite- angle,
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Figure 7.-

p,u,v diagram with entropy rise,
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Figure 8.- Shock polar in the tangential plane at the p dome,
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Figure 9,- Shock polar diagram of air (k = 1,405). Shock polars, solid lines;
Po'/Pg curves, broken lines,
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Flow past a flat plate with angle of attack,

Figure 10.~

Flow past a biconvex profile,

Figure 11,-
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Fig‘ure‘ 12,~ Schlieren photograph of flow past a biconvex profile,
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